Bacteria from the rhizosphere and tissues of As-hyperaccumulator Pteris vittata and their role in arsenic transformation.

نویسندگان

  • Yong-He Han
  • Meng-Ru Jia
  • Xue Liu
  • Ying Zhu
  • Yue Cao
  • Deng-Long Chen
  • Yanshan Chen
  • Lena Q Ma
چکیده

Arsenic (As)-resistant bacteria are abundant in the rhizosphere and tissues of As-hyperaccumulator Pteris vittata. However, little is known about their roles in As transformation and As uptake in P. vittata. In this study, the impacts of P. vittata tissue extracts with or without surface sterilization on As transformation in solutions containing 100 μg L-1 AsIII or AsV were investigated. After 48 h incubation, the sterilized and unsterilized root extracts resulted in 45% and 73% oxidation of AsIII, indicating a role of both rhizobacteria and endobacteria. In contrast, AsV reduction was only found in rhizome and frond extracts at 3.7-24% of AsV. A total of 37 strains were isolated from the tissue extracts, which are classified into 18 species based on morphology and 16S rRNA. Phylogenic analysis showed that ∼44% isolates were Firmicutes and others were Proteobacteria except for one strain belonging to Bacteroidetes. While most endobacteria were Firmicutes, most rhizobacteria were Proteobacteria. All isolated bacteria belonged to AsV reducers except for an As-sensitive strain and one AsIII- oxidizer PVR-YHB6-1. Since As transformation was not observed in solutions after filtrating or boiling, we concluded that both rhizobacteria and endobacteria were involved in As transformation in the rhizosphere and tissues of P. vittata.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arsenic-resistant bacteria solubilized arsenic in the growth media and increased growth of arsenic hyperaccumulator Pteris vittata L.

The role of arsenic-resistant bacteria (ARB) in arsenic solubilization from growth media and growth enhancement of arsenic-hyperaccumulator Pteris vittata L. was examined. Seven ARB (tolerant to 10 mM arsenate) were isolated from the P. vittata rhizosphere and identified by 16S rRNA sequencing as Pseudomonas sp., Comamonas sp. and Stenotrophomonas sp. During 7-d hydroponic experiments, these ba...

متن کامل

Effectiveness of applying arsenate reducing bacteria to enhance arsenic removal from polluted soils by Pteris vittata L.

Arsenic is a common contaminant in soils and water. It is well established that the fern Pteris vittata L. is an As hyperaccumulator and therefore has potential to phyroremediate As-polluted soils. Also, it is accepted that rhizosphere microflora play an enhancing role in plant uptake of metallic elements from soils. Studies showed that hydroponiclly grown P. Vittata accumulated arsenite more t...

متن کامل

Arsenic chemistry in the rhizosphere of Pteris vittata L. and Nephrolepis exaltata L.

This greenhouse experiment evaluated the influence of arsenic uptake by arsenic hyperaccumulator Pteris vittata L. and non-arsenic hyperaccumulator Nephrolepis exaltata L. on arsenic chemistry in bulk and rhizosphere soil. The plants were grown for 8 weeks in a rhizopot with a soil containing 105 mg kg(-1) arsenic. The soil arsenic was fractionated into five fractions with decreasing availabili...

متن کامل

Characterization of arsenic-resistant bacteria from the rhizosphere of arsenic hyperaccumulator Pteris vittata.

Arsenic hyperaccumulator fern Pteris vittata L. produces large amounts of root exudates that are hypothesized to solubilize arsenic and maintain a unique rhizosphere microbial community. Total heterotrophic counts on rich or defined media supplemented with up to 400 mmol/L of arsenate showed a diverse arsenate-resistant microbial community from the rhizosphere of P. vittata growing in arsenic-c...

متن کامل

Arsenic and phosphate rock impacted the abundance and diversity of bacterial arsenic oxidase and reductase genes in rhizosphere of As-hyperaccumulator Pteris vittata.

Microbially-mediated arsenic (As) transformation in soils affects As speciation and plant uptake. However, little is known about the impacts of As on bacterial communities and their functional genes in the rhizosphere of As-hyperaccumulator Pteris vittata. In this study, arsenite (AsIII) oxidase genes (aroA-like) and arsenate (AsV) reductase genes (arsC) were amplified from three soils, which w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemosphere

دوره 186  شماره 

صفحات  -

تاریخ انتشار 2017